
Paradigm shift in diagnostics and therapy

Outline

Non-communicable diseases

Current challenges and need for changes

Clinical proteome analysis to revolutionize medicine

- Why use proteomics?
- How we can measure the proteome?
- Collaborative approach and Mosaiques' scientific excellence

Available diagnostic tests

- How to order proteomics tests (sample collection and shipment)
- Chronic diseases and oncology

Non-communicable diseases

The leading cause of death

deaths each year

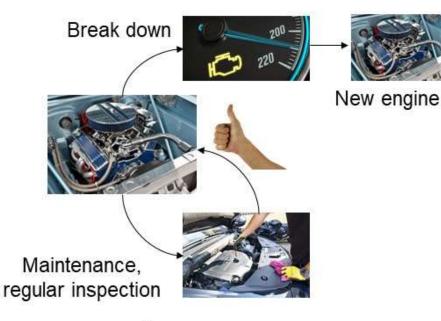
7 out of 10 deaths worldwide

77% deaths are in low- and middleincome countries

- 17 million people die before age 70
- 86% of premature deaths occur in low- and middleincome countries

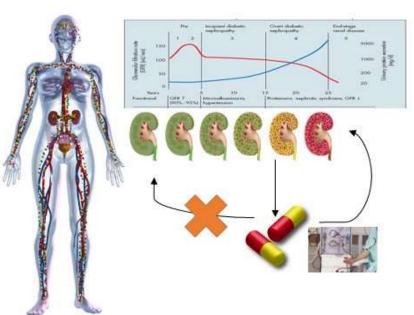
Cardiovascular: 17.9 million

Diabetes, kidney disease: 2.0 million



https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases

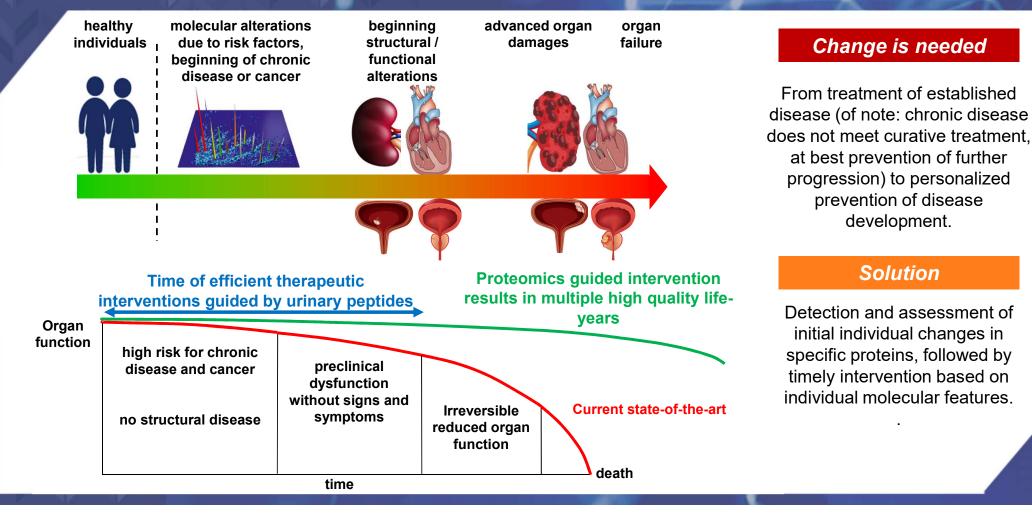
Non-communicable diseases


Current Challenge: Late Diagnosis

The human body compared with a car engine

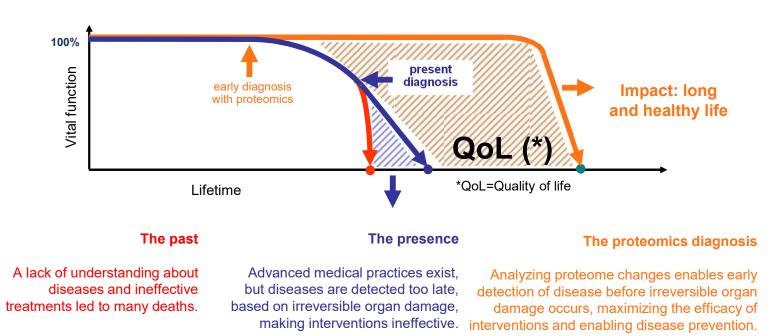
For your car:

You don't wait for the engine to break down; apply regular inspections and timely action. However, if engine fails, at worst, it can be replaced.



For your body:

No regular inspections, wait until disease is detectable (after ~50% loss of the organ's function) before starting therapy. By then, it is too late for effective treatment. The option to replace organ is limited or non-existing.


Non-communicable diseases

Time to act to protect the human life!

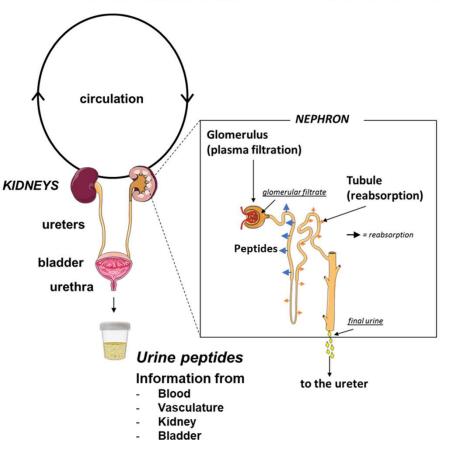
Revolution in medicine

Molecular disease definition and early detection: The key to a long and healthy life

Clinical proteome analysis Why proteins & proteomics?

- Proteins and peptides are active key players in every organism that enable and control life, normal and pathological development.
- Proteins are **responsible for all disease-specific processes**, initiate disease on the molecular level, **long before symptoms appear**, and are the target for drugs.
- Knowledge of the proteome/peptidome, the entirety of all proteins/peptides, enables accurate assessment of (patho)physiology on an individual level, in the context of disease enabling optimal and personalized patient management.

How we can measure the proteome (1)


Analysis of endogenous peptide content (protein degradation products, <20 kDa) in urine

Urine:

obtained non-invasively, easily accessible, in large quantities

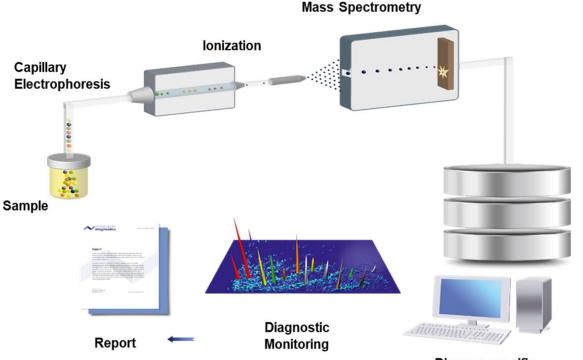
Urinary peptides:

- Display the systemic/ peripheral disease associated changes
- Stable \rightarrow comparable datasets

Adapted from Decramer S et al. Mol Cell Proteomics. 2008; 7(10):1850-62.

How we can measure the proteome (2)

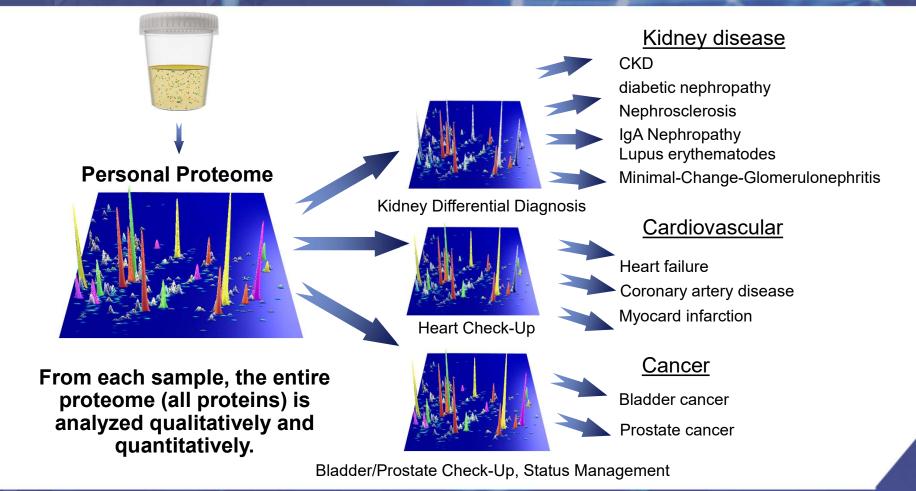
<u>Capillary</u> <u>electrophoresis -</u> <u>mass spectrometry</u> <u>(CE-MS):</u>

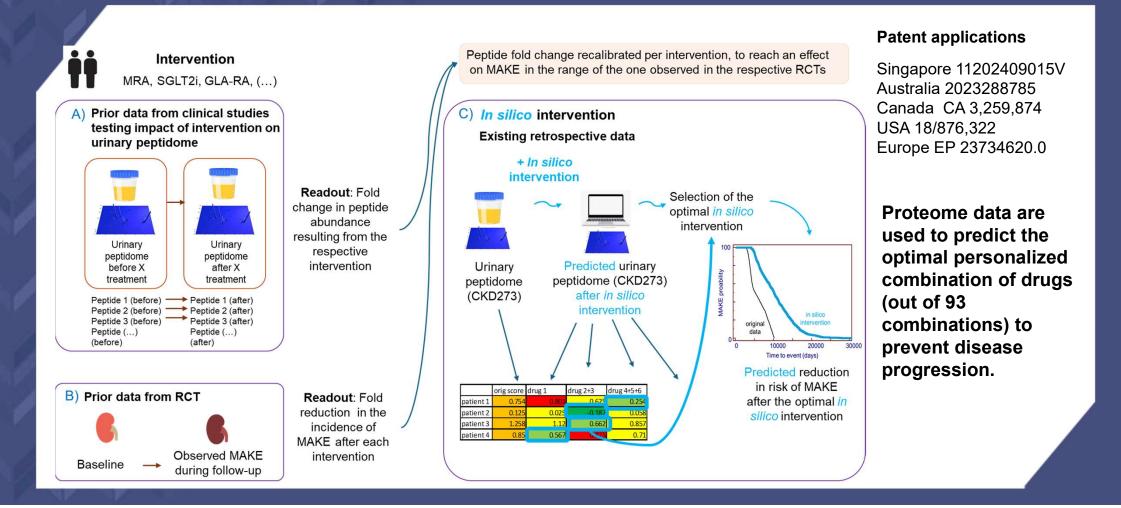

>8000 small proteins and peptides

Run time ~60 min

High reproducibility

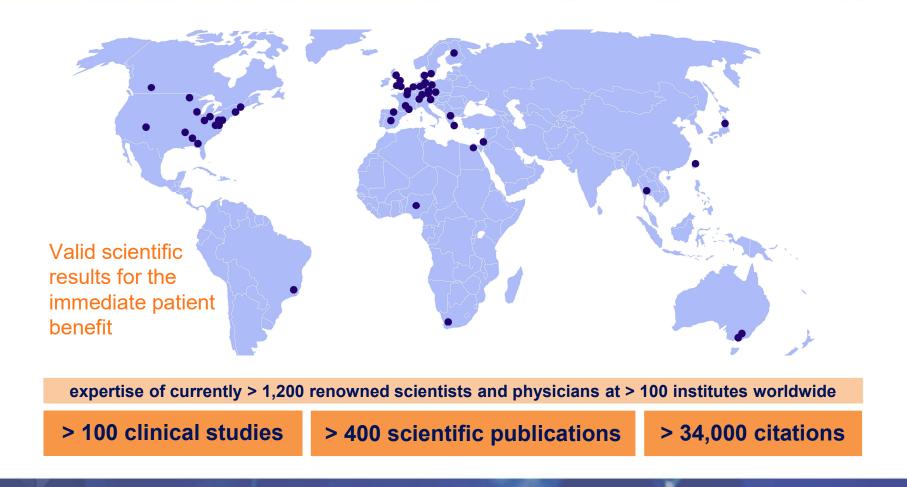
High-throughput


Low sample consumption (0.7 ml)


Disease specific Database and Biomarkers

Latosinska et al. Proteomics Clin Appl. 2021,15(1):e2000027; Adapted from: Pontillo et al. Clin Kidney J. 2017;10(2):192-201

One sample = Multiple diagnoses



Guiding personalized intervention

Collaboration

The basis of Mosaiques' proteomics approach

Collaboration

The basis of Mosaiques' proteomics approach

Collaboration

Some results of ongoing collaborations with African scientists

DOI: 10.1002/pmic.20220044 **RESEARCH ARTICLE**

Proteomics

Identifying a urinary peptidomics profile for hypertension in young adults: The African-PREDICT study

Urinary peptidomics and hypertension

Dalene De Beer¹ Catharina M.C. Mels^{1,2} Aletta E. Schutte^{1,2,3} Christian Delles⁴ | Sheon Mary⁴ | William Mullen⁴ | Agnieszka Latosinska⁵ Harald Mischak⁵ Ruan Kruger^{1,2}

HE FOURNAL OF CLINICAL HYPERTENSION

ORIGINAL ARTICLE 🖻 Open Access 🛛 🛞 🛞 🛞

Urinary proteomics combined with home blood pressure telemonitoring for health care reform trial—First progress report

Babangida S. Chori MSc. De-Wei An MD. PhD. Dries S. Martens PhD. Yu-Ling Yu MD. Decase and the second secon Katarzyna Stolarz-Skrzypek MD, PhD, Wiktoria Wojciechowska MD, PhD, Krzysztof Narkiewicz MD, PhD, Marek Rajzer MD, PhD, Jana Brguljan-Hitij MD, PhD, Tim S. Nawrot PhD, Kei Asayama MD, PhD, Peter Reyskens DVM, Harald Mischak PhD, Augustine N. Odill MD, PhD, Jan A. Staessen MD, PhD 🕿 the UPRIGHT-HTM Investigators

First published: 06 May 2023 | https://doi.org/10.1111/jch.14664

Article | Published: 17 November 2022

A urinary peptidomics approach for early stages of cardiovascular disease risk: The African-PREDICT study

Dalene de Beer, Catharina M. C. Mels, Aletta E. Schutte, Christian Delles, Sheon Mary, William Mullen, Harald Mischak & Ruan Kruger

Hypertension Research 46, 485–494 (2023) Cite this article

Original Articles

Urinary proteomics combined with home blood pressure telemonitoring for health care reform trial: rational and protocol

Lutgarde Thijs 💿, Kei Asayama 💿, Gladys E. Maestre 💿, Tine W. Hansen 💿, Luk Buyse, Dong-Mei Wei 💿, Jesus D. Melgarejo 💿, Jana Brguljan-Hitij 💿, Hao-Min Cheng 💿, Fabio de Souza 💿, Natasza Gilis-Malinowska 💿, Kalina Kawecka-Jaszcz 😕, Carina Mels 😕, Gontse Mokwatsi, Elisabeth S. Muxfeldt, Krzysztof Narkiewicz 👳 Augustine N. Odili, Marek Rajzer 💿, Aletta E. Schutte 💿, Katarzyna Stolarz-Skrzypek 💿, Yi-Wen Tsai, Thomas Vanassche 💿, Raymond Vanholder 💿, Zhen-Yu Zhang 💿, Peter Verhamme 💿, Ruan Kruger, Harald Mischak 💿, Jan A. Staessen 🕿 💿, The UPRIGHT-HTM Investigators, Coordinating, Logistic, Recruiting, and, Urinary Proteomics Centres, & Advisors: ...showless Pages 269-281 | Received 08 Jun 2021, Accepted 01 Jul 2021, Published online: 30 Aug 20. General Cite this article Anttps://doi.org/10.1080/08037051.2021.1952061

ORIGINAL ARTICLE

Multiple urinary peptides are associated with hypertension: a link to molecular pathophysiology

Mavrogeorgis, Emmanouil^{a,b,*}; Kondyli, Margarita^{c,*}; Mischak, Harald^a; Vlahou, Antonia^d; Siwy, Justyna^a; Rossing, Peter^{e,f}; Campbell, Archie^g; Mels, Carina M.C.^{h,i}; Delles, Christianⁱ; Staessen, Jan A.^k; Latosinska, Agnieszka^a; Persu, Alexandre

Author Information ()

Journal of Hypertension ():10.1097/HJH.00000000003726, March 29, 2024. | DOI: 10.1097/HJH.00000000003726

proteome research

Urinary Peptidomics and Pulse Wave Velocity: The African-PREDICT Study

Dalene de Beer, Catharina MC Mels, Aletta E Schutte, Christian Delles, Sheon Mary, William Mullen, Harald Mischak, and Ruan Kruger*

RESEARCH

BMC Nephrology

Cleater

Cardiovascular risk and kidney function profiling using conventional and novel biomarkers in young adults: the African-PREDICT study

A Degenaar¹, A Jacobs^{1,2}, R Kruger^{1,2}, C Delles³, H Mischak^{3,4} and CMC Mels^{1,2*}

Available diagnostic tests IVD registration and FDA Letter-of-support

- All proteomic tests are registered as in-vitro diagnostics (IVD) in Germany.
- Letter-of-support from the US-FDA for the kidney disease test.
- Since February 1st 2024, our diagnostic tests are reimbursed by the first statutory health insurance company in Germany.

tändige Behörde / Compet	ent authority		
Code DE/CA09			
Bezeichnung / Name Staatliches Gewerbeaut	sichtsamt Hannover		
Land / Country Deutschland		Bundesland / Federal state Niedersachsen	
Ort / City Hannover		Postleitzahl / Postal code 30177	
Straße, Haus-Nr. / Street Am Listholze 74	I, house number		
Am Listholze /4 Telefon / Phone +49-511-90960		Fax +49-511-9096199	
E-Mail poststelle@gaa-h.niede	ersachsen.de		
eige / Notification			
Registrierdatum bei der z Registration date at comp 2004-07-05 Typ der Anzeige / Notifica	etent authority		
Registrierdatum bei der z Registration date at comp 2004-07-05 Typ der Anzeige / Notifica	vetent authority	DECA6908221WDH SERVICES PUBLIC HEALTH SPERVICE Food and Drug Administration	
Registrierdatum bei der z Registration date at comp 2004-07-05 Typ der Anzeige / Notifica	vetent authority	SERVICES PUBLIC HEALTH SERVICE Food and Drug Administration Center for Drug Evaluation and Researc 1903 New Hampshire Avenue	
Registrierdatum bei der z Registrierdatum bei der z Registrierdatum bei der z Registrierdatum bei der z Zube-07-06 Typ der Anzeige / Notifiz DEPARTMENT (otent aŭhority DF HEALTH & HUMAN June 14, 2016	SER VICES PUBLIC HEALTH SERVICE Food and Drug Administration Center for Drug Evaluation and Resarc 10903 New Hampshire Avenue Silver Spring, MD 20993 w. Med. Habil, Ph.D. stis GmbH 0	

Allgemeine Anzeigepflicht nach §§ 25 und 30 Abs. 2 MPG General Obligation to Notify pursuant to §§ 25 and 30 (2) Medical Devices Act, MPG

We are issuing this Letter of Support to Mossiques Diagnostics: GmbH to encourage the further development of CKD273, a prognostic enrichment biomatker panel composed of 273 urinary peptides, to be used in combination with current measures (i.e., albuminutia, secura creatinnic) in early phase clinical italis in diabetic kidney disease (DKD) to identify patients with early stage disease who may be more likely to progress. For a listing of the composers of the CKD273 biomarker panel, please see Appendix 1. CF

Available diagnostic tests Sampling and shipment

Urine sampling (second morning urine, midstream).

Transfer urine into monovette.

Collection and storage (-20°C).

Collective or individual sample shipping.

Proteomics analysis (CE-MS).

Report of results within three working days after receiving a sample.

Kidney

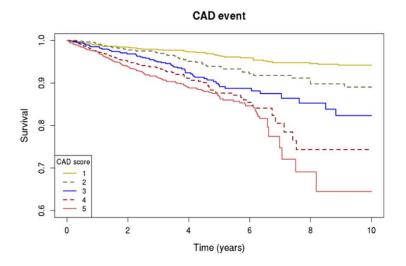
The the urinary peptide test for early detection of chronic kidney and cardiovascular disease should be performed in the presence of risk factors, e.g.:

- Age
- Diabetes,
- Obesity,
- Hypertension,
- High cholesterol,
- Familiy history,
- Smoking

Enabling personalized therapy, targeted prevention of disease onset and progression

Registered in-vitro diagnostic (IVD) tests for chronic diseases

Test name	HCU	CRS	KDD
	(Heart Check-Up)	(CardioRenal Status)	(Kidney Differential Diagnosis)
Function	Detection and prediction of coronary	Prediction of major complications	Prediction of chronic kidney diseases
	artery disease (CAD) and congestive	of diabetes mellitus and	(CKD) and differential diagnosis of
	heart failure (HF)	hypertension (CKD; CAD, HF)	common CKD subtypes
Accuracy (AUC and hazard ratio (HZ))	<u>CAD</u> AUC 83 % ¹ , HR 1.72 ² <u>HF</u> AUC 94 % ³ ,HR 2.59 ²	CKD AUC 96 % ¹ , HR 4.19 ² CAD AUC 83 % ³ , HR 1.72 ² HF AUC 94 % ⁴ , HR 2.59 ²	<u>CKD</u> AUC 96 % ¹ <u>Differential diagnosis</u> AUC 77–95 % (DN, MGN, MCD, IgAN, FSGS, LN, vasculitis) ² <u>IgANprogression</u> AUC 72 % ³
Reference	 ¹ Wei D, et al. Eur J Prev Cardiol. 2023,	 ¹ Good DM, et al. Mol Cell	 ¹ Good DM, et al. Mol Cell Proteomics
	00: 1–10. ² Jaimes Campos MA, et al.	Proteomics 2010, 9(11):2424 ² Jaimes Campos MA, et al.	2010, 9(11):2424 ² Siwy J, et al. Nephrol Dial Transplant.
	Pharmaceuticals 2023, 16(9): 1298 ³ Campbell RT, et al. ESC Heart Fail.	Pharmaceuticals 2023, 16(9),	2017, 32(12):2079 ³ Rudnicki M, et al. Nephrol Dial
	2020, 7(4):1595 Zhang et al. J Am Heart Assoc. 2017,	1298 ³ Wei D, et al. Eur J Prev Cardiol.	Transplant. 2021;37(1):42-52 Peters et al., Nephrol Dial Transplant.
	6(8):e005432 Htun et al. PLoS One. 2017,	2023, 00: 1–10. ⁴ Campbell RT, et al. ESC Heart	2023;38(12):2826-2834 Catanese et al. Clin Kidney J. 2023,
	12(3):e0172036 He et al. Clin Transl Med. 2021,	Fail. 2020, 7(4):1595 Tofte et al. Lancet Diabetes	17(2), sfad296 Mavrogeorgis E, et al. Nephrol Dial
	11(1):e267	Endocrinol. 2020. 8(4):301-312	Transplant. 2024;39(3):453-462

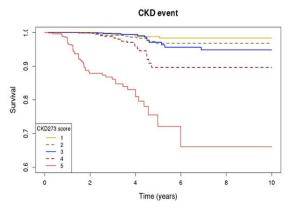


Heart

Scientific evidence and added value in early diagnosis of CVD

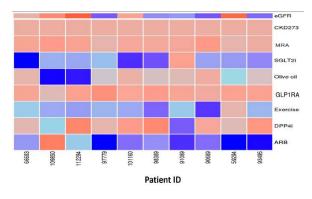
The HCU test enables early detection of the most relevant cardiovascular diseases: coronary artery disease (CAD) and diastolic LV dysfunction / heart failure (HF). This allows early and personalized therapy and thus prevention of serious illnesses or death.

Kaplan-Meier survival analysis of proteomic CAD prediction: Hazard Ratio = $1.72 (\pm 0.050)$; p < 0.0001


The new classifier further improved the risk reclassification of CAD on top of the **Framingham or SCORE2 risk scores** (net reclassification index: 0.61, 95% CI: 0.25–0.95, P = 0.001; 0.64, 95% CI: 0.28–0.98, P = 0.001, correspondingly).

Jaimes Campos MA, et al. Pharmaceuticals 2023, 16(9), 1298 Wei D, et al. Eur J Prev Cardiol. 2023, 00: 1–10 Zhang et al. J Am Heart Assoc. 2017, 6(8):e005432 Htun et al. PLoS One. 2017, 12(3):e0172036 Zhang et al. Hypertension. 2015 Jul;66(1):52-60. He et al. Clin Transl Med. 2021, 11(1):e267

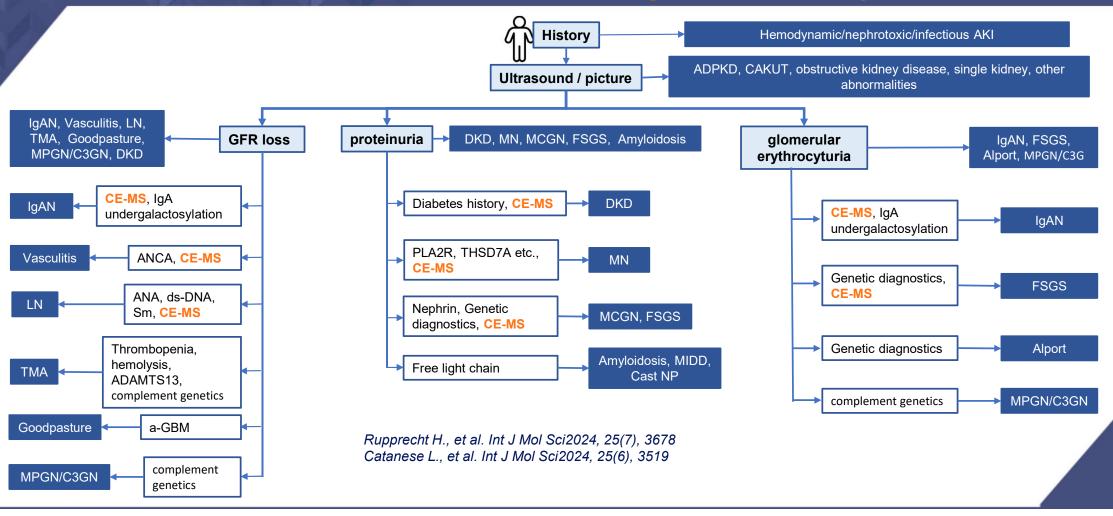
Proteomics identifies patients at risk of developing CVD event.


Scientific evidence and added value in early diagnosis of kidney diseases

The KDD test enables early detection of CKD and differentiation between the most common subtypes, guiding personalized therapy at early stage, ideally preventing onset of clinically evident CKD.

Kaplan-Meier survival analysis of proteomic prediction of chronic kidney disease progression : Hazard Ratio = 4.19 (±0.094); p < 0.0001

In silico prediction of individual response to specific intervention (blue=response, red=no response)


Current used albuminuria detect kidney disease when there is massive organ damage.

KDD is the only test worldwide that demonstrated early detection in prospective clinical trial!

Jaimes Campos et al., Pharmaceuticals 2023, 16(9), 1298 Tofte et al. Lancet Diabetes Endocrinol. 2020. 8(4):301-312 Pontillo et al. Nephrol Dial Transplant. 2017 Sep 1;32(9):1510

Proteomics identifies patients who will develop CKD in advance to albuminuria.

Recommendation for biomarkers in the management of kidney diseases

Diagnostic tests: Oncology Who are the tests for?

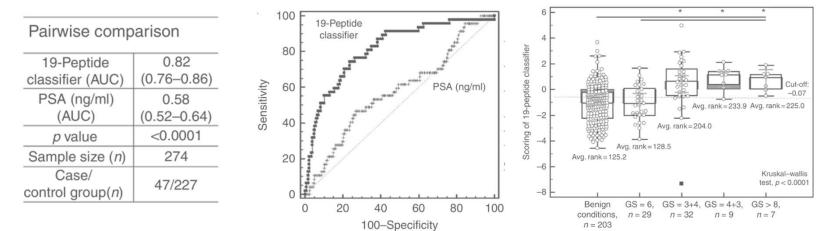
Bladder

Prostate

The the urinary peptide test for detection of bladder and prostate cancer should be performed by the presence of risk factors, e.g.:

- Hematuria
- Painful urination
- Back pain (bladder cancer)
- Frequent infection (bladder cancer)
- Family history (prostate cancer)
- Increased PSA (prostate cancer)

For non-invasive early detection, monitoring, and guiding therapy

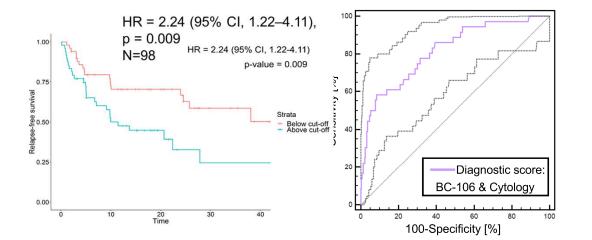

Diagnostic tests: Onclology Registered in-vitro diagnostic (IVD) tests for tumour detection

Testname	PCU (Prostate Check-Up)	PSM (Prostate Status Management)	BCU or BSM (Bladder Check-Up or Management)	
Function	Prostate cancer diagnosis after increased PSA-value	Diagnosis of significant prostate cancer	Detection of primary bladder cancer Monitoring for recurrence of bladder cancer	Bladder
Accuracy (AUC)	81 % ¹	82 % ¹	85 or 82 % +cytology ¹	
Reference	¹ Frantzi M, et al. Cancers (Basel). 2023 Feb 11;15(4):1166. Schiffer E, et al. Int J Urol. 2012, 19(2):118	¹ Frantzi M, et al. Br J Cancer 2019, 120(12):1120 Frantzi M, et al. World J Urol. 2022, 40(9):2195	¹ Mengual L, et al. Br J Cancer 2022, 127(11):2043 Frantzi M, et al. Clin Cancer Res, 2016, 22(16):4077	Prostate

Diagnostic tests: Oncology

Scientific evidence and added value in early diagnosis of prostate cancer

- > Detection of prostate cancer (PCa) using the non-invasive urine based PCU test.
- Discrimination between significant (requiring treatment) and indolent (no treatment required) PCa using the non-invasive **PSM test**.


Groups based on pathology of prostate

Frantzi et al. World J Urol. 2022, 40(9):2195-2203 Frantzi et al. Br J Cancer. 2019, 120(12):1120-1128 Frantzi M, et al. Cancers (Basel). 2023 Feb 11;15(4):1166.

Proteomics identify prostate cancer more accurate and earlier.

Diagnostic tests: Oncology Scientific evidence and added value in diagnosis of bladder cancer

- The BCU test can detect Bladder cancer (BC) early and non-invasively. This gives the opportunity for timely initiation of appropriate treatment.
- BC has a high recurrence rate of more than 50 %. Therefore, monitoring for recurrence of BC is necessary. The **BSM test** enables non-invasive monitoring.

ROC curve	BC-106 & Cytology	
Recurrent cohort	n= 318	
Cases / Controls	n= 36 / 282	
AUC	0.82	
95% CI	0.77 – 0.86	
Significance P	<0.0001	

Frantzi et al. Clin Cancer Res 2016, 22(16):4077-86, Krochmal et al. Sci Rep. 2019;9(1):7635 Mengual et al. Br J Cancer. 2022, 127(11):2043-2051

Proteomics biomarkers enables detection of primary and recurrent BC

Why choose our diagnostic method?

The technology and the clinical application have been:

- developed during the last 20 years
- published in >400 scientific articles that have been cited >20000 times
- proven in >100 clinical studies
- based on >85000 proteome datasets
- containing information on >100 million individual measurements
- generated together with >1200 scientists worldwide

"Exploring the Future: **Do You Have Questions?"**

Harald Mischak Prof. PhD MD Dipl.-Ing.

Co-founder of • mosaiques

Agnieszka Latosinska PhD

cardiology

Maria Franzi PhD

oncology

Justyna Siwy PhD

nephrology

www.power-ofproteomics.com www.CDPP.dev

protexam

mosaiques-diagnostics GmbH **Rotenburger Str. 20 D-30659 Hannover, GERMANY** Phone: +49 (0)511 55 47 44 0 +49 (0)511 55 47 44 31 Fax: e-mail: mischak@mosaiques-diagnostics.com